Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Air Waste Manag Assoc ; : 1-10, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718302

RESUMO

In many regions of the world, the relationship between ambient temperature and mortality is well-documented, but little is known about Cyprus, a Mediterranean island country where climate change is progressing faster than the global average. We Examined the association between daily ambient temperature and all-cause mortality risk in Cyprus. We conducted a time-series analysis with quasipoisson distribution and distributed lag non-linear models to investigate the association between temperature and all-cause mortality from 1 January 2004 to 31 December 2019 in five districts in Cyprus. We then performed a meta-analysis to estimate the overall temperature-mortality dose-response relationship in Cyprus. Excess mortality was computed to determine the public health burden caused by extreme temperatures. We did not find evidence of heterogeneity between the five districts (p = 0.47). The pooled results show that for cold effects, comparing the 1st, 2.5th, and 5th percentiles to the optimal temperature (temperature associated with least mortality, 25 ℃), the overall relative risks of mortality were 1.55 (95% CI: 1.32, 1.82), 1.41 (95% CI: 1.21, 1.64), and 1.32 (95% CI: 1.15, 1.52), respectively. For heat effects, the overall relative risks of mortality at the 95th, 97.5th and 99th percentiles were 1.10 (95% CI: 1.04, 1.16), 1.17 (95% CI: 1.07, 1.29), and 1.29 (95% CI: 1.11, 1.5), respectively. The excess mortality attributable to cold days accounted for 8.0 deaths (95% empirical CI: 4.5-10.8) for every 100 deaths, while the excess mortality attributable to heat days accounted for 1.3 deaths (95% empirical CI: 0.7-1.7) for every 100 deaths. The results prompt additional research into environmental risk prevention in this under-studied hot and dry region that could experience disproportionate climate change related exposures.Implications: The quantification of excess mortality attributable to temperature extremes shows an urgent need for targeted public health interventions and climate adaptation strategies in Cyprus and similar regions facing rapid climate change. Future steps should look into subpopulation sensitivity, coping strategies, and adaptive interventions to reduce potential future risks.

2.
BMJ Glob Health ; 9(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637119

RESUMO

INTRODUCTION: To examine the impact of the COVID-19 pandemic on mortality, we estimated excess all-cause mortality in 24 countries for 2020 and 2021, overall and stratified by sex and age. METHODS: Total, age-specific and sex-specific weekly all-cause mortality was collected for 2015-2021 and excess mortality for 2020 and 2021 was calculated by comparing weekly 2020 and 2021 age-standardised mortality rates against expected mortality, estimated based on historical data (2015-2019), accounting for seasonality, and long-term and short-term trends. Age-specific weekly excess mortality was similarly calculated using crude mortality rates. The association of country and pandemic-related variables with excess mortality was investigated using simple and multilevel regression models. RESULTS: Excess cumulative mortality for both 2020 and 2021 was found in Austria, Brazil, Belgium, Cyprus, England and Wales, Estonia, France, Georgia, Greece, Israel, Italy, Kazakhstan, Mauritius, Northern Ireland, Norway, Peru, Poland, Slovenia, Spain, Sweden, Ukraine, and the USA. Australia and Denmark experienced excess mortality only in 2021. Mauritius demonstrated a statistically significant decrease in all-cause mortality during both years. Weekly incidence of COVID-19 was significantly positively associated with excess mortality for both years, but the positive association was attenuated in 2021 as percentage of the population fully vaccinated increased. Stringency index of control measures was positively and negatively associated with excess mortality in 2020 and 2021, respectively. CONCLUSION: This study provides evidence of substantial excess mortality in most countries investigated during the first 2 years of the pandemic and suggests that COVID-19 incidence, stringency of control measures and vaccination rates interacted in determining the magnitude of excess mortality.


Assuntos
COVID-19 , Feminino , Masculino , Humanos , Pandemias , Itália , Grécia , Fatores Etários
3.
Thorax ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388489

RESUMO

INTRODUCTION: Elevated particulate matter (PM) concentrations of anthropogenic and/or desert dust origin are associated with increased morbidity among children with asthma. OBJECTIVE: The Mitigating the Health Effects of Desert Dust Storms Using Exposure-Reduction Approaches randomised controlled trial assessed the impact of exposure reduction recommendations, including indoor air filtration, on childhood asthma control during high desert dust storms (DDS) season in Cyprus and Greece. DESIGN, PARTICIPANTS, INTERVENTIONS AND SETTING: Primary school children with asthma were randomised into three parallel groups: (a) no intervention (controls); (b) outdoor intervention (early alerts notifications, recommendations to stay indoors and limit outdoor physical activity during DDS) and (c) combined intervention (same as (b) combined with indoor air purification with high efficiency particulate air filters in children's homes and school classrooms. Asthma symptom control was assessed using the childhood Asthma Control Test (c-ACT), spirometry (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC)) and fractional exhaled nitric oxide (FeNO). RESULTS: In total, 182 children with asthma (age; mean=9.5, SD=1.63) were evaluated during 2019 and 2021. After three follow-up months, the combined intervention group demonstrated a significant improvement in c-ACT in comparison to controls (ß=2.63, 95% CI 0.72 to 4.54, p=0.007), which was more profound among atopic children (ß=3.56, 95% CI 0.04 to 7.07, p=0.047). Similarly, FEV1% predicted (ß=4.26, 95% CI 0.54 to 7.99, p=0.025), the need for any asthma medication and unscheduled clinician visits, but not FVC% and FeNO, were significantly improved in the combined intervention compared with controls. CONCLUSION: Recommendations to reduce exposure and use of indoor air filtration in areas with high PM pollution may improve symptom control and lung function in children with asthma. TRIAL REGISTRATION NUMBER: NCT03503812.

4.
Environ Int ; 181: 108258, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837748

RESUMO

BACKGROUND: The epidemiological evidence on the interaction between heat and ambient air pollution on mortality is still inconsistent. OBJECTIVES: To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. METHODS: We used daily data on all-cause mortality, air temperature, particulate matter ≤ 10 µm (PM10), PM ≤ 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995-2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. RESULTS: We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 µg/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 µg/m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 µg/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. CONCLUSIONS: Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Temperatura Alta , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
5.
BMJ ; 383: e075203, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37793695

RESUMO

OBJECTIVE: To investigate potential interactive effects of fine particulate matter (PM2.5) and ozone (O3) on daily mortality at global level. DESIGN: Two stage time series analysis. SETTING: 372 cities across 19 countries and regions. POPULATION: Daily counts of deaths from all causes, cardiovascular disease, and respiratory disease. MAIN OUTCOME MEASURE: Daily mortality data during 1994-2020. Stratified analyses by co-pollutant exposures and synergy index (>1 denotes the combined effect of pollutants is greater than individual effects) were applied to explore the interaction between PM2.5 and O3 in association with mortality. RESULTS: During the study period across the 372 cities, 19.3 million deaths were attributable to all causes, 5.3 million to cardiovascular disease, and 1.9 million to respiratory disease. The risk of total mortality for a 10 µg/m3 increment in PM2.5 (lag 0-1 days) ranged from 0.47% (95% confidence interval 0.26% to 0.67%) to 1.25% (1.02% to 1.48%) from the lowest to highest fourths of O3 concentration; and for a 10 µg/m3 increase in O3 ranged from 0.04% (-0.09% to 0.16%) to 0.29% (0.18% to 0.39%) from the lowest to highest fourths of PM2.5 concentration, with significant differences between strata (P for interaction <0.001). A significant synergistic interaction was also identified between PM2.5 and O3 for total mortality, with a synergy index of 1.93 (95% confidence interval 1.47 to 3.34). Subgroup analyses showed that interactions between PM2.5 and O3 on all three mortality endpoints were more prominent in high latitude regions and during cold seasons. CONCLUSION: The findings of this study suggest a synergistic effect of PM2.5 and O3 on total, cardiovascular, and respiratory mortality, indicating the benefit of coordinated control strategies for both pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Poluentes Ambientais , Ozônio , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades , Fatores de Tempo , Exposição Ambiental/efeitos adversos
6.
J Expo Sci Environ Epidemiol ; 33(4): 646-651, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37322149

RESUMO

BACKGROUND: Middle Eastern desert countries like Kuwait are known for intense dust storms and enormous petrochemical industries affecting ambient air pollution. However, local health authorities have not been able to assess the health impacts of air pollution due to limited monitoring networks and a lack of historical exposure data. OBJECTIVE: To assess the burden of PM2.5 on mortality in the understudied dusty environment of Kuwait. METHODS: We analyzed the acute impact of fine particulate matter (PM2.5) on daily mortality in Kuwait between 2001 and 2016. To do so, we used spatiotemporally resolved estimates of PM2.5 in the region. Our analysis explored factors such as cause of death, sex, age, and nationality. We fitted quasi-Poisson time-series regression for lagged PM2.5 adjusted for time trend, seasonality, day of the week, temperature, and relative humidity. RESULTS: There was a total of 70,321 deaths during the study period of 16 years. The average urban PM2.5 was estimated to be 46.2 ± 19.8 µg/m3. A 10 µg/m3 increase in a 3-day moving average of urban PM2.5 was associated with 1.19% (95% CI: 0.59, 1.80%) increase in all-cause mortality. For a 10 µg/m3 reduction in annual PM2.5 concentrations, a total of 52.3 (95% CI: 25.7, 79.1) deaths each year could be averted in Kuwait. That is, 28.6 (95% CI: 10.3, 47.0) Kuwaitis, 23.9 (95% CI: 6.4, 41.5) non-Kuwaitis, 9.4 (95% CI: 1.2, 17.8) children, and 20.9 (95% CI: 4.3, 37.6) elderly deaths each year. IMPACT STATEMENT: The overwhelming prevalence of devastating dust storms and enormous petrochemical industries in the Gulf and the Middle East has intensified the urgency to address air pollution and its detrimental health effects. Alarmingly, the region's epidemiological research lags behind, hindered by a paucity of ground monitoring networks and historical exposure data. In response, we are harnessing the power of big data to generate predictive models of air pollution across time and space, providing crucial insights into the mortality burden associated with air pollution in this under-researched yet critically impacted area.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Criança , Humanos , Idoso , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Kuweit/epidemiologia , Clima Desértico , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Poeira/análise , Mortalidade
7.
Circulation ; 147(1): 35-46, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36503273

RESUMO

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Isquemia Miocárdica , Acidente Vascular Cerebral , Humanos , Temperatura Alta , Temperatura , Causas de Morte , Temperatura Baixa , Morte , Mortalidade
8.
Sci Total Environ ; 863: 160973, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36539092

RESUMO

Desert dust storms (DDS) are natural events that impact not only populations close to the emission sources but also populations many kilometers away. Countries located across the main dust sources, including countries in the Eastern Mediterranean, are highly affected by DDS. In addition, climate change is expanding arid areas exacerbating DDS events. Currently, there are no intervention measures with proven, quantified exposure reduction to desert dust particles. As part of the wider "MEDEA" project, co-funded by LIFE 2016 Programme, we examined the effectiveness of an indoor exposure-reduction intervention (i.e., decrease home ventilation during DDS events and continuous use of air purifier during DDS and non-DDS days) across homes and/or classrooms of schoolchildren with asthma and adults with atrial fibrillation in Cyprus and Crete-Greece. Participants were randomized to a control or intervention groups, including an indoor intervention group with exposure reduction measures and the use of air purifiers. Particle sampling, PM10 and PM2.5, was conducted in participants' homes and/or classrooms, between 2019 and 2022, during DDS-free weeks and during DDS days for as long as the event lasted. In indoor and outdoor PM10 and PM2.5 samples, mass and content in main and trace elements was determined. Indoor PM2.5 and PM10 mass concentrations, adjusting for premise type and dust conditions, were significantly lower in the indoor intervention group compared to the control group (PM2.5-intervention/PM2.5-control = 0.57, 95% CI: 0.47, 0.70; PM10-intervention/PM10-control = 0.59, 95% CI: 0.49, 0.71). In addition, the PM2.5 and PM10 particles of outdoor origin were significantly lower in the intervention vs. the control group (PM2.5 infiltration intervention-to-control ratio: 0.49, 95% CI: 0.42, 0.58; PM10 infiltration intervention-to-control ratio: 0.68, 95% CI: 0.52, 0.89). Our findings suggest that the use of air purifiers alongside decreased ventilation measures is an effective protective measure that reduces significantly indoor exposure to particles during DDS and non-DDS in high-risk population groups.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Oligoelementos , Adulto , Humanos , Criança , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poeira/prevenção & controle , Poeira/análise , Material Particulado/análise , Tamanho da Partícula
9.
Sci Total Environ ; 860: 160518, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36573449

RESUMO

Current public health recommendations for desert dust storms (DDS) events focus on vulnerable population groups, such as children with asthma, and include advice to stay indoors and limit outdoor physical activity. To date, no scientific evidence exists on the efficacy of these recommendations in reducing DDS exposure. We aimed to objectively assess the behavioral responses of children with asthma to recommendations for reduction of DDS exposure. In two heavily affected by DDS Mediterranean regions (Cyprus & Crete, Greece), schoolchildren with asthma (6-11 years) were recruited from primary schools and were randomized to control (business as usual scenario) and intervention groups. All children were equipped with pedometer and GPS sensors embedded in smartwatches for objective real-time data collection from inside and outside their classroom and household settings. Interventions included the timely communication of personal DDS alerts accompanied by exposure reduction recommendations to both the parents and school-teachers of children in the intervention group. A mixed effect model was used to assess changes in daily levels of time spent, and steps performed outside classrooms and households, between non-DDS and DDS days across the study groups. The change in the time spent outside classrooms and homes, between non-DDS and DDS days, was 37.2 min (pvalue = 0.098) in the control group and -62.4 min (pvalue < 0.001) in the intervention group. The difference in the effects between the two groups was statistically significant (interaction pvalue < 0.001). The change in daily steps performed outside classrooms and homes, was -495.1 steps (pvalue = 0.350) in the control group and -1039.5 (pvalue = 0.003) in the intervention group (interaction pvalue = 0.575). The effects on both the time and steps performed outside were more profound during after-school hours. To summarize, among children with asthma, we demonstrated that timely personal DDS alerts and detailed recommendations lead to significant behavioral changes in contrast to the usual public health recommendations.


Assuntos
Asma , Dispositivos Eletrônicos Vestíveis , Criança , Humanos , Poeira/prevenção & controle , Asma/prevenção & controle , Asma/epidemiologia , Instituições Acadêmicas , Comunicação
10.
Int J Epidemiol ; 52(3): 664-676, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36029524

RESUMO

BACKGROUND: To understand the impact of the COVID-19 pandemic on mortality, this study investigates overall, sex- and age-specific excess all-cause mortality in 20 countries, during 2020. METHODS: Total, sex- and age-specific weekly all-cause mortality for 2015-2020 was collected from national vital statistics databases. Excess mortality for 2020 was calculated by comparing weekly 2020 observed mortality against expected mortality, estimated from historical data (2015-2019) accounting for seasonality, long- and short-term trends. Crude and age-standardized rates were analysed for total and sex-specific mortality. RESULTS: Austria, Brazil, Cyprus, England and Wales, France, Georgia, Israel, Italy, Northern Ireland, Peru, Scotland, Slovenia, Sweden, and the USA displayed substantial excess age-standardized mortality of varying duration during 2020, while Australia, Denmark, Estonia, Mauritius, Norway, and Ukraine did not. In sex-specific analyses, excess mortality was higher in males than females, except for Slovenia (higher in females) and Cyprus (similar in both sexes). Lastly, for most countries substantial excess mortality was only detectable (Austria, Cyprus, Israel, and Slovenia) or was higher (Brazil, England and Wales, France, Georgia, Italy, Northern Ireland, Sweden, Peru and the USA) in the oldest age group investigated. Peru demonstrated substantial excess mortality even in the <45 age group. CONCLUSIONS: This study highlights that excess all-cause mortality during 2020 is context dependent, with specific countries, sex- and age-groups being most affected. As the pandemic continues, tracking excess mortality is important to accurately estimate the true toll of COVID-19, while at the same time investigating the effects of changing contexts, different variants, testing, quarantine, and vaccination strategies.


Assuntos
COVID-19 , Feminino , Masculino , Humanos , COVID-19/epidemiologia , Pandemias , Itália , França , Fatores Etários , Mortalidade
11.
BMC Public Health ; 22(1): 54, 2022 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000578

RESUMO

BACKGROUND: Understanding the impact of the burden of COVID-19 is key to successfully navigating the COVID-19 pandemic. As part of a larger investigation on COVID-19 mortality impact, this study aims to estimate the Potential Years of Life Lost (PYLL) in 17 countries and territories across the world (Australia, Brazil, Cape Verde, Colombia, Cyprus, France, Georgia, Israel, Kazakhstan, Peru, Norway, England & Wales, Scotland, Slovenia, Sweden, Ukraine, and the United States [USA]). METHODS: Age- and sex-specific COVID-19 death numbers from primary national sources were collected by an international research consortium. The study period was established based on the availability of data from the inception of the pandemic to the end of August 2020. The PYLL for each country were computed using 80 years as the maximum life expectancy. RESULTS: As of August 2020, 442,677 (range: 18-185,083) deaths attributed to COVID-19 were recorded in 17 countries which translated to 4,210,654 (range: 112-1,554,225) PYLL. The average PYLL per death was 8.7 years, with substantial variation ranging from 2.7 years in Australia to 19.3 PYLL in Ukraine. North and South American countries as well as England & Wales, Scotland and Sweden experienced the highest PYLL per 100,000 population; whereas Australia, Slovenia and Georgia experienced the lowest. Overall, males experienced higher PYLL rate and higher PYLL per death than females. In most countries, most of the PYLL were observed for people aged over 60 or 65 years, irrespective of sex. Yet, Brazil, Cape Verde, Colombia, Israel, Peru, Scotland, Ukraine, and the USA concentrated most PYLL in younger age groups. CONCLUSIONS: Our results highlight the role of PYLL as a tool to understand the impact of COVID-19 on demographic groups within and across countries, guiding preventive measures to protect these groups under the ongoing pandemic. Continuous monitoring of PYLL is therefore needed to better understand the burden of COVID-19 in terms of premature mortality.


Assuntos
COVID-19 , Idoso , Brasil , Feminino , Humanos , Expectativa de Vida , Masculino , Mortalidade , Mortalidade Prematura , Pandemias , SARS-CoV-2 , Estados Unidos
12.
Int J Epidemiol ; 51(1): 35-53, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-34282450

RESUMO

BACKGROUND: This study aimed to investigate overall and sex-specific excess all-cause mortality since the inception of the COVID-19 pandemic until August 2020 among 22 countries. METHODS: Countries reported weekly or monthly all-cause mortality from January 2015 until the end of June or August 2020. Weekly or monthly COVID-19 deaths were reported for 2020. Excess mortality for 2020 was calculated by comparing weekly or monthly 2020 mortality (observed deaths) against a baseline mortality obtained from 2015-2019 data for the same week or month using two methods: (i) difference in observed mortality rates between 2020 and the 2015-2019 average and (ii) difference between observed and expected 2020 deaths. RESULTS: Brazil, France, Italy, Spain, Sweden, the UK (England, Wales, Northern Ireland and Scotland) and the USA demonstrated excess all-cause mortality, whereas Australia, Denmark and Georgia experienced a decrease in all-cause mortality. Israel, Ukraine and Ireland demonstrated sex-specific changes in all-cause mortality. CONCLUSIONS: All-cause mortality up to August 2020 was higher than in previous years in some, but not all, participating countries. Geographical location and seasonality of each country, as well as the prompt application of high-stringency control measures, may explain the observed variability in mortality changes.


Assuntos
COVID-19 , Feminino , França , Humanos , Itália , Masculino , Mortalidade , Pandemias , SARS-CoV-2
13.
Pediatr Pulmonol ; 57(2): 386-394, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34818465

RESUMO

OBJECTIVES: To prospectively quantify at the community level changes in asthma symptom control and other morbidity indices, among asthmatic schoolchildren in response to coronavirus disease 2019 (COVID-19) lockdown measures. METHODS: In Spring 2019 and Spring 2020, we prospectively assessed monthly changes in pediatric asthma control test (c-ACT), asthma medication usage, infections and unscheduled visits for asthma among schoolchildren with active asthma in Cyprus and Greece. We compared asthma symptom control and other morbidity indices before and during lockdown measures, while participants' time spent at home was objectively assessed by wearable sensors. RESULTS: A total of 119 asthmatic children participated in the study during Spring 2020. Compared to a mean baseline (pre-COVID-19 lockdown) c-ACT score of 22.70, adjusted mean increases of 2.58 (95% confidence interval [CI]: 1.91, 3.26, p < 0.001) and 3.57 (95% CI: 2.88, 4.27, p < 0.001) in the 2nd and 3rd monthly assessments were observed after implementation of lockdown measures. A mean increase in c-ACT score of 0.32 (95% CI: 0.17, 0.47, p < 0.001) was noted per 10% increase in the time spent at home. Improvement was more profound in children with severe asthma, while significant reductions in infections, asthma medication usage and unscheduled visits for asthma were also observed. During Spring 2019, 39 children participated in the study in the absence of lockdown measures and no changes in c-ACT or other indices of disease severity were observed. CONCLUSIONS: Clinically meaningful improvements in asthma symptom control, among asthmatic schoolchildren were observed during the COVID-19 lockdown measures in Spring 2020. Improvements were independently associated with time spent at home and were more profound in the children with severe asthma.


Assuntos
Asma , COVID-19 , Asma/tratamento farmacológico , Asma/epidemiologia , Criança , Controle de Doenças Transmissíveis , Chipre/epidemiologia , Grécia/epidemiologia , Humanos , Pandemias , Estudos Prospectivos , SARS-CoV-2
14.
Sci Rep ; 11(1): 5895, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723342

RESUMO

Between March and April 2020, Cyprus and Greece health authorities enforced three escalated levels of public health interventions to control the COVID-19 pandemic. We quantified compliance of 108 asthmatic schoolchildren (53 from Cyprus, 55 from Greece, mean age 9.7 years) from both countries to intervention levels, using wearable sensors to continuously track personal location and physical activity. Changes in 'fraction time spent at home' and 'total steps/day' were assessed with a mixed-effects model adjusting for confounders. We observed significant mean increases in 'fraction time spent at home' in Cyprus and Greece, during each intervention level by 41.4% and 14.3% (level 1), 48.7% and 23.1% (level 2) and 45.2% and 32.0% (level 3), respectively. Physical activity in Cyprus and Greece demonstrated significant mean decreases by - 2,531 and - 1,191 (level 1), - 3,638 and - 2,337 (level 2) and - 3,644 and - 1,961 (level 3) total steps/day, respectively. Significant independent effects of weekends and age were found on 'fraction time spent at home'. Similarly, weekends, age, humidity and gender had an independent effect on physical activity. We suggest that wearable technology provides objective, continuous, real-time location and activity data making possible to inform in a timely manner public health officials on compliance to various tiers of public health interventions during a pandemic.


Assuntos
Asma/epidemiologia , COVID-19/epidemiologia , Monitorização Fisiológica/métodos , SARS-CoV-2 , Dispositivos Eletrônicos Vestíveis , Adolescente , Asma/diagnóstico , Criança , Pré-Escolar , Chipre , Feminino , Grécia , Humanos , Masculino , Monitorização Fisiológica/instrumentação , Vigilância em Saúde Pública , Índice de Gravidade de Doença , Mobilidade Social
15.
BMC Pediatr ; 21(1): 13, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407248

RESUMO

BACKGROUND: Desert dust events in Mediterranean countries, originating mostly from the Sahara and Arabian deserts, have been linked to climate change and are associated with significant increase in mortality and hospital admissions from respiratory causes. The MEDEA clinical intervention study in children with asthma is funded by EU LIFE+ program to evaluate the efficacy of recommendations aiming to reduce exposure to desert dust and related health effects. METHODS: This paper describes the design, methods, and challenges of the MEDEA childhood asthma study, which is performed in two highly exposed regions of the Eastern Mediterranean: Cyprus and Greece-Crete. Eligible children are recruited using screening surveys performed at primary schools and are randomized to three parallel intervention groups: a) no intervention for desert dust events, b) interventions for outdoor exposure reduction, and c) interventions for both outdoor and indoor exposure reduction. At baseline visits, participants are enrolled on MEDena® Health-Hub, which communicates, alerts and provides exposure reduction recommendations in anticipation of desert dust events. MEDEA employs novel environmental epidemiology and telemedicine methods including wearable GPS, actigraphy, health parameters sensors as well as indoor and outdoor air pollution samplers to assess study participants' compliance to recommendations, air pollutant exposures in homes and schools, and disease related clinical outcomes. DISCUSSION: The MEDEA study evaluates, for the first time, interventions aiming to reduce desert dust exposure and implement novel telemedicine methods in assessing clinical outcomes and personal compliance to recommendations. In Cyprus and Crete, during the first study period (February-May 2019), a total of 91 children participated in the trial while for the second study period (February-May 2020), another 120 children completed data collection. Recruitment for the third study period (February-May 2021) is underway. In this paper, we also present the unique challenges faced during the implementation of novel methodologies to reduce air pollution exposure in children. Engagement of families of asthmatic children, schools and local communities, is critical. Successful study completion will provide the knowledge for informed decision-making both at national and international level for mitigating the health effects of desert dust events in South-Eastern Europe. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03503812 , April 20, 2018.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Asma , África do Norte , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Asma/diagnóstico , Asma/prevenção & controle , Criança , Poeira/análise , Exposição Ambiental/efeitos adversos , Europa Oriental , Grécia , Humanos
16.
Sci Total Environ ; 714: 136693, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31978777

RESUMO

The characteristics of desert dust storms (DDS) have been shown to change in response to climate change and land use. There is limited information on the frequency and intensity of DDS over the last decade at a regional scale in the Eastern Mediterranean. An algorithm based on daily ground measurements (PM10, particulate matter ≤10 µm), satellite products (dust aerosol optical depth) and meteorological parameters, was used to identify dust intrusions for three Eastern Mediterranean locations (Crete-Greece, Cyprus, and Israel) between 2006 and 2017. Days with 24-hr average PM10 concentration above ~30 µg/m3 were found to be a significant indicator of DDS for the background sites of Cyprus and Crete. Higher thresholds were found for Israel depending on the season (fall and spring: PM10 > 70 µg/m3, winter and summer: PM10 > 90 µg/m3). We observed a high variability in the frequency and intensity of DDS during the last decade, characterized by a steady trend with sporadic peaks. The years with the highest DDS frequency were not necessarily the years with the most intense episodes. Specifically, the highest dust frequency was observed in 2010 at all three locations, but the highest annual median dust-PM10 level was observed in 2012 in Crete (55.8 µg/m3) and Israel (137.4 µg/m3), and in 2010 in Cyprus (45.3 µg/m3). Crete and Cyprus experienced the same most intense event in 2006, with 24 h-PM10 average of 705.7 µg/m3 and 1254.6 µg/m3, respectively, which originated from Sahara desert. The highest 24 h-PM10 average concentration for Israel was observed in 2010 (3210.9 µg/m3) during a three-day Saharan dust episode. However, a sub-analysis for Cyprus (years 2000-2017) suggests a change in DDS seasonality pattern, intensity, and desert of origin. For more robust conclusions on DDS trends in relation to climate change, future work needs to study data over several decades from different locations.

17.
Environ Int ; 126: 476-483, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844583

RESUMO

BACKGROUND: The health burden from exposure to air pollution has been studied in many parts of the world. However, there is limited research on the health effects of air quality in arid areas where sand dust is the primary particulate pollution source. OBJECTIVE: Study the risk of mortality from exposure to poor air quality days in Kuwait. METHODS: We conducted a time-series analysis using daily visibility as a measure of particulate pollution and non-accidental total mortality from January 2000 through December 2016. A generalized additive Poisson model was used adjusting for time trends, day of week, and temperature. Low visibility (yes/no), defined as visibility lower than the 25th percentile, was used as an indicator of poor air quality days. Dust storm events were also examined. Finally, we examined these associations after stratifying by gender, age group, and nationality (Kuwaitis/non-Kuwaitis). RESULTS: There were 73,748 deaths from natural causes in Kuwait during the study period. The rate ratio comparing the mortality rate on low visibility days to high visibility days was 1.01 (95% CI: 0.99-1.03). Similar estimates were observed for dust storms (1.02, 95% CI: 1.00-1.04). Higher and statistically significant estimates were observed among non-Kuwaiti men and non-Kuwaiti adolescents and adults. CONCLUSION: We observed a higher risk of mortality during days with poor air quality in Kuwait from 2000 through 2016.


Assuntos
Poluição do Ar , Mortalidade , Adolescente , Adulto , Idoso , Poluentes Atmosféricos , Criança , Pré-Escolar , Poeira , Feminino , Humanos , Lactente , Recém-Nascido , Kuweit/epidemiologia , Masculino , Pessoa de Meia-Idade , Estações do Ano , Temperatura , Adulto Jovem
18.
Environ Int ; 109: 89-100, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28988023

RESUMO

BACKGROUND: The link between PM2.5 exposure and adverse health outcomes is well documented from studies across the world. However, the reported effect estimates vary across studies, locations and constituents. We aimed to conduct a meta-analysis on associations between short-term exposure to PM2.5 constituents and mortality using city-specific estimates, and explore factors that may explain some of the observed heterogeneity. METHODS: We systematically reviewed epidemiological studies on particle constituents and mortality using PubMed and Web of Science databases up to July 2015.We included studies that examined the association between short-term exposure to PM2.5 constituents and all-cause, cardiovascular, and respiratory mortality, in the general adult population. Each study was summarized based on pre-specified study key parameters (e.g., location, time period, population, diagnostic classification standard), and we evaluated the risk of bias using the Office of Health Assessment and Translation (OHAT) Method for each included study. We extracted city-specific mortality risk estimates for each constituent and cause of mortality. For multi-city studies, we requested the city-specific risk estimates from the authors unless reported in the article. We performed random effects meta-analyses using city-specific estimates, and examined whether the effects vary across regions and city characteristics (PM2.5 concentration levels, air temperature, elevation, vegetation, size of elderly population, population density, and baseline mortality). RESULTS: We found a 0.89% (95% CI: 0.68, 1.10%) increase in all-cause, a 0.80% (95% CI: 0.41, 1.20%) increase in cardiovascular, and a 1.10% (95% CI: 0.59, 1.62%) increase in respiratory mortality per 10µg/m3 increase in PM2.5. Accounting for the downward bias induced by studies of single days, the all-cause mortality estimate increased to 1.01% (95% CI: 0.81, 1.20%). We found significant associations between mortality and several PM2.5 constituents. The most consistent and stronger associations were observed for elemental carbon (EC) and potassium (K). For most of the constituents, we observed high variability of effect estimates across cities. CONCLUSIONS: Our meta-analysis suggests that (a) combustion elements such as EC and K have a stronger association with mortality, (b) single lag studies underestimate effects, and (c) estimates of PM2.5 and constituents differ across regions. Accounting for PM mass in constituent's health models may lead to more stable and comparable effect estimates across different studies. SYSTEMATIC REVIEW REGISTRATION: PROSPERO: CRD42017055765.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Material Particulado/análise , Cidades , Bases de Dados Factuais , Humanos , Mortalidade , Análise de Regressão
19.
Environ Sci Technol ; 48(20): 12150-6, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25252224

RESUMO

There is growing concern about the accuracy of trace elemental analysis of ambient particulate matter (PM) samples. This has become important because ambient PM concentrations have decreased over the years, and the lower filter loadings result in difficulties in accurate analysis. The performance of energy-dispersive X-ray reflectance spectrometry was evaluated at Harvard School of Public Health using several methodologies, including intercomparison between two other laboratories. In reanalysis of standard films as unknown samples following calibration, the HSPH ED XRF measurements represented good performance: 2% errors in precision and 4% errors in accuracy. Replicate analysis of ambient air filters with low PM2.5 levels indicated that S, K, Fe, and Ca showed excellent reproducibility, most other quantifiable elements were below 15% error, and the elements with larger percent of flagged measurements had less in precision. Results from the interlaboratory comparison demonstrated that most quantifiable elements, except Na and Al, were quite comparable for the three laboratories. Na performance could be validated from the stoichiometry of Na to Cl of indoor PM2.5 filter samples.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Espectrometria por Raios X , Filtros de Ar , Monitoramento Ambiental , Laboratórios/estatística & dados numéricos , Controle de Qualidade , Reprodutibilidade dos Testes , Instituições Acadêmicas , Oligoelementos/análise
20.
J Air Waste Manag Assoc ; 64(12): 1352-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25562931

RESUMO

Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 µg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 µg/m3 every year A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000-2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) µg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 µg/m3 in 1993 to 49.0 µg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 µg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 µg/m3 since 2000 and much higher in earlier years. Despite the large impact ofdust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. Implications: This paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Uion annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the hig particle levels.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análise , Ritmo Circadiano , Cidades , Chipre , Geografia , Modelos Teóricos , Tamanho da Partícula , Tecnologia de Sensoriamento Remoto , Estações do Ano , Astronave , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA